15 research outputs found

    A Global Federated Real-World Data and Analytics Platform for Research

    Get PDF
    Objective This article describes a scalable, performant, sustainable global network of electronic health record data for biomedical and clinical research. Materials and Methods TriNetX has created a technology platform characterized by a conservative security and governance model that facilitates collaboration and cooperation between industry participants, such as pharmaceutical companies and contract research organizations, and academic and community-based healthcare organizations (HCOs). HCOs participate on the network in return for access to a suite of analytics capabilities, large networks of de-identified data, and more sponsored trial opportunities. Industry participants provide the financial resources to support, expand, and improve the technology platform in return for access to network data, which provides increased efficiencies in clinical trial design and deployment. Results TriNetX is a growing global network, expanding from 55 HCOs and 7 countries in 2017 to over 220 HCOs and 30 countries in 2022. Over 19 000 sponsored clinical trial opportunities have been initiated through the TriNetX network. There have been over 350 peer-reviewed scientific publications based on the network’s data. Conclusions The continued growth of the TriNetX network and its yield of clinical trial collaborations and published studies indicates that this academic-industry structure is a safe, proven, sustainable path for building and maintaining research-centric data networks

    Exploring Breast Cancer Systemic Drug Therapy Patterns in Real-World Data

    Get PDF
    PURPOSE: To explore medications and their administration patterns in real-world patients with breast cancer. METHODS: A retrospective study was performed using TriNetX, a federated network of deidentified, Health Insurance Portability and Accountability Act-compliant data from 21 health care organizations across North America. Patients diagnosed with breast cancer between January 1, 2013, and May 31, 2022, were included. We investigated a rule-based and unsupervised learning algorithm to extract medications and their administration patterns. To group similar administration patterns, we used three features in k-means clustering: total number of administrations, median number of days between administrations, and standard deviation of the days between administrations. We explored the first three lines of therapy for patients classified into six groups on the basis of their stage at diagnosis (early as stages I-III RESULTS: In early-stage HR+/ CONCLUSION: Although there is a general agreement with the NCCN Guidelines, real-world medication data exhibit variability in the medications and their administration patterns

    The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment.

    Get PDF
    OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19
    corecore